Estimating Entropy Rates with Bayesian Confidence Intervals
نویسندگان
چکیده
منابع مشابه
Estimating Entropy Rates with Bayesian Confidence Intervals
The entropy rate quantifies the amount of uncertainty or disorder produced by any dynamical system. In a spiking neuron, this uncertainty translates into the amount of information potentially encoded and thus the subject of intense theoretical and experimental investigation. Estimating this quantity in observed, experimental data is difficult and requires a judicious selection of probabilistic ...
متن کاملEstimating Information Rates with Confidence Intervals in Neural Spike Trains
Information theory provides a natural set of statistics to quantify the amount of knowledge a neuron conveys about a stimulus. A related work (Kennel, Shlens, Abarbanel, & Chichilnisky, 2005) demonstrated how to reliably estimate, with a Bayesian confidence interval, the entropy rate from a discrete, observed time series. We extend this method to measure the rate of novel information that a neu...
متن کاملBootstrap Confidence Intervals for Smoothing Splines and Their Comparison to Bayesian Confidence Intervals
We construct bootstrap confidence intervals for smoothing spline and smoothing spline ANOVA estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from exponential families. Several variations of bootstrap confidence intervals are considered and compared. We find that the commonly used bootstrap percentile intervals are inferior to the T intervals an...
متن کاملBootstrapping: estimating confidence intervals for cost-effectiveness ratios.
Economic evaluations are increasingly being conducted alongside clinical trials of health interventions, with resource consequences being estimated from stochastic data. It is, therefore, important that economic evaluation results, like the clinical results, reflect the underlying variance within the sample data. A statistical methodology, known as bootstrapping, has recently been put forward a...
متن کاملThe 95% confidence intervals of error rates and discriminant coefficients
Fisher proposed a linear discriminant function (Fisher’s LDF). From 1971, we analysed electrocardiogram (ECG) data in order to develop the diagnostic logic between normal and abnormal symptoms by Fisher’s LDF and a quadratic discriminant function (QDF). Our four years research was inferior to the decision tree logic developed by the medical doctor. After this experience, we discriminated many d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2005
ISSN: 0899-7667,1530-888X
DOI: 10.1162/0899766053723050